Macrolide antibiotics inhibit mucus secretion and calcium entry in Swine airway submucosal mucous gland cells.
نویسندگان
چکیده
Macrolide antibiotics such as erythromycin (EM) and azithromycin (AZM) are beneficial in the treatment of mucus hypersecretion in inflammatory pulmonary diseases. Several indirect and direct mechanisms of action have been proposed. This study investigates the direct effect of macrolides on secretory function of isolated submucosal mucous gland cells (SMGCs). We hypothesize that macrolides inhibit the calcium influx necessary for evoked mucus secretion. To test this, we quantified mucin protein release using enzyme-linked immunosorbent assay, calcium-activated K(+) (K(Ca)), and calcium-activated Cl(-) (Cl(Ca)) currents. We measured nonselective cation current (NSCC) using whole-cell patch-clamp techniques; intracellular calcium concentration ([Ca(2+)](i)) was measured using fura-2 Ca(2+) imaging. We found that both EM and AZM are agonists at muscarinic receptors. EM (10 μM) evoked a small but significant increase in mucin release but inhibited the mucin release induced by subsequent acetylcholine (ACh) treatment. Both EM and AZM (10 μM) evoked K(Ca) and Cl(Ca) whole-cell currents, which were blocked by atropine. EM and AZM also accelerated the decay of inositol trisphosphate-induced K(Ca) and Cl(Ca) currents without changing the peak current amplitudes. Likewise, internal application of AZM (10 μM) enhanced the decay rate of ACh-induced K(Ca) and Cl(Ca) currents. EM (1-10 μM) and AZM (0.1-10 μM) slowly (over 25-30 min) inhibited thapsigargin (TG)-induced Ca(2+) entry when applied during the plateau phase of Ca(2+) entry but blunted TG-induced Ca(2+) entry by 70% after a 5-min pretreatment before initiating calcium entry. EM blocked TG-induced NSCC. We conclude that macrolide antibiotics are partial agonists at muscarinic receptors but inhibit stimulated mucus release by inhibiting calcium entry in SMGCs.
منابع مشابه
Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma.
BACKGROUND Mucus plugging of the airways is invariably seen in cases of fatal asthma, mucus production is associated with asthma attacks, and the area of submucosal glands is increased in asthma. Mediators secreted from mast cells and neutrophils can stimulate mucous gland secretion. A study was undertaken to count the mast cells and neutrophils in submucosal glands and to relate cell numbers t...
متن کاملMucus Secretion and Calcium Mobilization in Airway Submucosal Gland Cell
Airway mucus secretion from submucosal gland cells (SMGC) plays an important role in protecting the respiratory system from pathogens and particles. However, mucus hypersecretion is a common pathophysiological characteristic of many chronic inflammatory pulmonary diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma that can lead to airway obstruction and im...
متن کاملHuman neutrophil elastase releases two pools of mucinlike glycoconjugate from tracheal submucosal gland cells.
Neutrophil elastase can contribute to the pathogenesis of increased airway reactivity and excess mucus secretion in many pulmonary diseases. Ten nanomolar human neutrophil elastase (HNE) effectively empties airway serous cells, raising the question of why HNE is not equally effective at emptying mucous cells of their stored mucin because total release of mucin granules is not seen in postmortem...
متن کاملProperties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands.
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et a...
متن کاملIn vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells.
To examine the in vivo effects of macrolide antibiotics on mucus hypersecretion, we induced hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium by intranasal instillation of ovalbumin (OVA) in OVA-sensitized rats and by intranasal LPS instillation. Oral administration of clarithromycin (CAM) (5-10 mg/kg) significantly inhibited OVA- and LPS-induced mucus production and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 336 1 شماره
صفحات -
تاریخ انتشار 2011